
Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle
Department of Computer Science
https://www.cs.usfca.edu/ 

Conditional Locks
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Thread States

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html 

Runnable TerminatedNew

Timed Waiting BlockedWaiting

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Motivation
● Need multithreading to speedup calculation for large, 

complex problems

● Need synchronization to protect data (memory 
consistency) and operations (atomicity)

● The synchronized keyword causes blocking, reducing 
the speedup needed in the first place

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Motivation
● Assume have a large shared data structure

○ When is it okay to read from this data structure?
○ When is it okay to write to this data structure?

● What operations may occur concurrently?
○ Thread 1 reads A, Thread 2 reads A
○ Thread 1 reads A, Thread 2 writes A
○ Thread 1 writes A, Thread 2 writes A

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Motivation
● Assume have a large shared data structure

○ When is it okay to read from this data structure?
○ When is it okay to write to this data structure?

● What operations may occur concurrently?
○ Thread 1 reads A, Thread 2 reads A
○ Thread 1 reads A, Thread 2 writes A
○ Thread 1 writes A, Thread 2 writes A

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Concurrent Operations
● Mutual Exclusion

○ One thread may run synchronized code at a time 
(blocking other threads)

○ Lots of blocking defeats purpose of multithreading
● Conditional Synchronization

○ Only block if certain conditions are true
○ Uses a combination of wait() and notify()

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Simple Read/Write Lock
● May read to shared data structure if…

○ No other threads are writing to it

● May write to shared data structure if…
○ No other threads are reading or writing the data

● Must track…
○ Number of active readers and writers
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/ReadWriteLock.html 

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/ReadWriteLock.html


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Simple Read/Write Lock

● Lock methods
○ Wait until safe to acquire lock
○ Use a while loop to avoid spurious wakeups
○ Use wait() and notifyAll() to avoid busy-wait
○ Increase number of threads with lock

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/Condition.html 

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/Condition.html


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Simple Read/Write Lock

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/Condition.html 

● Unlock methods
○ Decrease number of threads with lock
○ Wake up threads if necessary using notifyAll()

● Separate lock methods for read and read/write

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/Condition.html


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

1. ReadWriteLock lock = new ReadWriteLock();
2. SharedData data = new SharedData();
3.  
4. lock.readLock().lock();   +/ protects read-only ops
5. data.read();
6. lock.readLock().unlock();
7.  
8. lock.writeLock().lock();  +/ protects write operations
9. data.read();              +/ or read/write operations

10. data.write();
11. lock.writeLock().unlock();

Using a Simple Read/Write Lock 

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Example Read Lock Implementation

1. while (writers > 0) {
2.     try {
3.         this.wait(); +/ assumes synchronized method
4.     }
5.     catch (InterruptedException e) {
6.         +/ log and re-interrupt
7.     }
8. }
9.

10. readers++;

https://www.cs.usfca.edu/


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Built-in Lock Objects
● See java.util.concurrent.locks

○ May not actually use any of these in class, but might 
be useful for debugging and testing

● Closest to ReentrantReadWriteLock
○ Ours prone to starvation, theirs has fairness policy
○ Supports reentrant locks (re-acquiring locks)

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/package-summary.html 

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/package-summary.html


Department of Computer Science
https://www.cs.usfca.edu/ 

CS 272 Software Development
Professor Sophie Engle

Improved Read/Write Lock
● Must also track…

○ Active writer thread

● May read to shared data structure if…
○ Active writer -or- no other threads are writing to it

● May write to shared data structure if…
○ Active writer -or- no threads reading or writing

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/ReentrantReadWriteLock.html 

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/concurrent/locks/ReentrantReadWriteLock.html


Professor Sophie Engle
sjengle.cs.usfca.edu 

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

